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AbstrAct

In the field of pattern recognition, probabilistic neural networks (PNNs) have been proven as an impor-
tant classifier. For pattern recognition of EMG signals, the characteristics usually used are: (1) ampli-
tude, (2) frequency, and (3) space. However, significant temporal characteristic exists in the transient 
and non-stationary EMG signals, which cannot be considered by traditional PNNs. In this article, a 
recurrent PNN, called recurrent log-linearized Gaussian mixture network (R-LLGMN), is introduced 
for EMG pattern recognition, with the emphasis on utilizing temporal characteristics. The structure 
of R-LLGMN is based on the algorithm of a hidden Markov model (HMM), which is a routinely used 
technique for modeling stochastic time series. Since R-LLGMN inherits advantages from both HMM and 
neural computation, it is expected to have higher representation ability and show better performance 
when dealing with time series like EMG signals. Experimental results show that R-LLGMN can achieve 
high discriminant accuracy in EMG pattern recognition. 
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INtrODUctION

Electromyographic (EMG) signals provide in-
formation about neuromuscular activities and 
have been recognized as efficient and promising 
resources for human-machine interface (HMI) 
used for the rehabilitation of people with mobility 
limitations and those with severe neuromuscular 
impairment. Typically, a pattern recognition 
process is applied to translate EMG signals into 
control commands for the HMIs, such as powered 
prostheses and functional electrical stimulation 
devices (Englehart et al., 2001; Fukuda et al., 2003; 
Hudgins et al., 1993; Lusted & Knapp, 1996). 
Generally speaking, a successful EMG pattern 
recognition technique relies on two principle 
elements: a pattern classifier with reliable dis-
crimination accuracy and efficient representation 
of EMG feature characteristics.

Probabilistic neural networks (PNNs) devel-
oped in the field of pattern recognition make a 
decision according to the probability density dis-
tribution of patterns in the feature space (Specht, 
1990; Tsuji et al., 1999). Since PNNs integrate 
statistical models into the neural networks’ archi-
tecture as prior knowledge, outstanding perfor-
mance has been reported. Recently, PNNs have 
become widely accepted as important classifiers 
and have been proven to be efficient, especially for 
complicated problems such as pattern recognition 
of bioelectric signals.

For EMG pattern recognition using PNNs, the 
feature characteristics usually used include: (1) 
amplitude, (2) frequency, and (3) spatial infor-
mation from multiple channels of EMG signals. 
However, significant temporal characteristics exist 
in the transient and non-stationary EMG signals, 
which cannot be considered by the traditional 
PNNs based on static stochastic models, and, in 
some cases, temporal characteristics could be the 
only clues for reliable recognition. 

This chapter introduces a recurrent PNN 
called recurrent log-linearized Gaussian mixture 
network (R-LLGMN) (Tsuji et al., 2003) into 

EMG pattern recognition, with emphasis on uti-
lizing temporal characteristics. The structure of 
R-LLGMN is based on the hidden Markov model 
(HMM) algorithm, which is a routinely used 
technique for modeling stochastic time series. 
Since R-LLGMN inherits the advantages from 
both HMM and neural computation, it is expected 
to have higher representation ability and exhibit 
better classification performance when dealing 
with time series like EMG signals.

After a review of the literature, the structure 
and algorithm of R-LLGMN are explained. The 
proposed EMG pattern recognition method using 
R-LLGMN is then described, and experiments on 
filtered EMG and raw EMG signals are presented. 
Based on the experimental results, the possibil-
ity of applying the proposed method to practical 
human interface control is discussed. The final 
section offers some concluding remarks.

bAcKGrOUND

Up to now, many techniques have been developed 
for EMG pattern recognition using statistical 
methods and neural networks (NNs). Kang et al. 
(1995) proposed a maximum likelihood method 
(MLM) based on Mahalanobis distances be-
tween input pattern and the prototypes, and the 
Bayes decision rule is applied in this method. A 
traditional linear discriminant analysis (LDA) 
classifier is used in an EMG classification scheme 
for multifunction myoelectric control (Englehart 
et al., 2001). 

Due to NNs’ learning capability of finding 
near-optimum functional relationships between 
the class memberships and the EMG patterns, 
several NN-based EMG pattern recognition 
methods have been presented. For example, Hi-
raiwa et al. (1989) used a multilayer perceptron 
(MLP) NN to perform pattern discrimination of 
five finger motions. Kelly et al. (1990) applied an 
MLP to classify four arm functions. Hudgins et 
al. (1993) devised a control system for powered 
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upper-limb prostheses using a set of time-domain 
features extracted from EMG signals and a simple 
MLP as a classifier. Also, similar studies have 
been developed using MLPs to classify EMG 
features, such as autoregressive (AR) parameters 
(Lamounier et al., 2002) and features of filtered 
EMG signals (Tsuji et al., 1993). However, several 
factors have hindered the extension of MLP clas-
sifiers for other applications, such as the choice 
of network structure, slow learning convergence, 
the need for a large amount of training data, and 
local minima. 

To tackle these problems, numerous attempts 
have been made by the pattern recognition com-
munity to integrate statistical models, as prior 
knowledge, into the classifier’s architecture, to 
take advantage of both statistical classification 
methods and neural computation. Consequently, 
probabilistic neural networks (PNNs) have been 
developed for pattern recognition (Specht, 1990; 
Zhang, 2000). In particular, Tsuji et al. (1999) 
proposed a feedforward PNN, a log-linearized 
Gaussian mixture network (LLGMN), which is 
based on the Gaussian mixture model (GMM) 
and a log-linear model. Although weights of the 
LLGMN correspond to a non-linear combination 
of the GMM parameters, such as mixture coef-
ficients, mean vectors, and covariance matrices, 
constraints on the parameters in the statistical 
model are relieved in the LLGMN. Therefore, a 
simple backpropagation-like learning algorithm 
can be derived, and the parameters of LLGMN 
are trained according to a criterion of maximum 
likelihood (ML). The LLGMN has been suc-
cessfully applied to EMG pattern recognition, 
where eight motions of the forearm have been 
classified using EMG signals measured by several 
pairs of electrodes (Fukuda et al., 2003). Also, 
the LLGMN has been further used to develop 
interface applications like prosthetic devices and 
EMG-based pointing devices (Fukuda et al., 1997, 
1999; Fukuda et al., 2003). 

However, since the GMM is a static stochastic 
model, it cannot make efficient use of temporal 

(time-varying) characteristics in EMG signals. 
Generally, pattern recognition using LLGMN is 
made under the assumption that feature patterns 
are stationary or change very slowly. EMG signals, 
in fact, are non-stationary and vary significantly 
in amplitude and frequency, even in the space 
domain. Due to the complicated nature of EMG 
signals, it is widely accepted that the temporal 
characteristic contains information important for 
pattern recognition (Englehart et al., 1999).

In order to cope with the time-varying char-
acteristics of EMG signals, a pattern recognition 
method using an MLP classifier and a neural filter 
(NF) was applied (Tsuji et al., 2000). Continuous 
motions by the operators can be discriminated with 
sufficient accuracy even using the non-stationary 
time series of EMG signals. In addition to improv-
ing the classifiers, time-frequency representations 
of EMG signals have been adopted to gain a high 
level of discrimination accuracy (Englehart et al., 
1999, 2001; Hussein & Granat, 2002). Although 
these methods can generate sufficient discrimina-
tion accuracy, there may be some criticism due to 
more complicated signal processing required or 
more intricate structure of classifiers. Also more 
parameters in the algorithm(s) of the signal pro-
cessing and/or the classifier need to be determined 
by the user. Optimization of the whole pattern 
recognition method is almost impossible, and it is 
hard to gain a high performance of discrimination, 
especially in practical applications. 

The present study focuses on the classifier 
aspect of EMG pattern recognition and introduces 
a recurrent PNN to improve discrimination ac-
curacy when dealing with non-stationary EMG 
signals.

A rEcUrrENt PrObAbILIstIc
NEUrAL NEtWOrK

The recurrent PNN, R-LLGMN (Tsuji et al., 2003), 
is based on the algorithm of continuous density 
hidden Markov model (CDHMM), which is a 



  ���

A Recurrent Probabilistic Neural Network for EMG Pattern Recognition

combination of the GMM and the HMM (Rabiner, 
1989). The probability density function (pdf) of 
input patterns is estimated using GMM; HMM 
is used simultaneously to model the time-varying 
characteristics in stochastic time series. In the 
R-LLGMN, recurrent connections are incorpo-
rated into the network structure to make efficient 
use of the time-varying characteristics of EMG 
signals. With the weight coefficients well trained 
using a learning scheme of the backpropagation 
through time (BPTT) algorithm, R-LLGMN can 
calculate posterior probabilities of the discrimi-
nating classes.

HMM-based Dynamic Probabilistic 
Model

First, let us consider a dynamic probabilistic 
model, as shown in Figure 1. There are C classes 
in this model, and each class c (c ∈{1,⋅⋅⋅,C}) is 
composed of Kc states. Suppose that, for the given 
time series (1), (2), , ( )T=x x x x

   ( ( ) )dt ∈ℜx , at 
any time x(t) must occur from one state k of class 
c in the model. With this model, the posterior 
probability for class c, ( | )P c x , is calculated as

' '
1 1 '' 1 ' 1

( )( | ) ( , | )
( )

c c

c

K K c
k

C K c
k k kc k

TP c P c k
T= =

= =

= =∑ ∑
∑ ∑

x x 

. 

      (1)

Here, ( )c
k T  is the forward variable, which 

is defined as the probability for time series 
(x(1),x(2),..., x(T) ) to be generated from class c, 
and vector x(T) occurs from state k in class c. 
According to the forward algorithm (Rabiner, 
1989), it can be derived as:

(1) ( (1)),c c c
k k kb= x    (2)

' ',
' 1

( ) ( 1) ( ( ))   (1 ),
cK

c c c c
k k k k k

k
t t b t t T

=

= - < ≤∑ x

      (3)

where ',
c
k k is the probability of the state chang-

ing from k' to k in class c, and ( ( ))c
kb tx  is defined 

as the posterior probability for state k in class c 
corresponding to x(t). Also, the prior probability 

c
k is equal to 0( , ) |tP c k = . 

In this model, the posterior probability 
( ( ))c

kb tx  is approximated by summing up Mc , k 
components of a Gaussian mixture distribution, 
and ', ( ( ))c c

k k kb tx  on the right side of (3) is de-
rived in the form shown in Box 1, where r(c , k , m) , 

( , , ) ( , , ) ( , , ) T
1( , , )c k m c k m c k m

d=  ,  ( , , )c k m d d×Σ ∈ℜ , 
( , , )c k m
jls  and xj(t) stands for the mixing proportion, 

the mean vector, the covariance matrix of each 
component {c,k,m}, the element of the inverse 
of covariance matrix ( , , ) 1c m k -Σ , and the element 
of x(t).

1

K

k

Gaussian mixture model
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m1

P
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k

1
2

KC
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Figure 1. HMM-based dynamic probabilistic model with C classes and Kc states in class c
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The R-LLGMN is developed from the model 
defined above. For an input time series x , the pos-
terior probability for each class can be estimated 
with a well-trained R-LLGMN. The R-LLGMN 
network structure and learning algorithm are 
explained in the following.

Network Architecture

R-LLGMN is a five-layer recurrent NN with 
feedback connections between the fourth and the 
third layers, the structure of which is shown in 
Figure 2. First, the input vector series ( ) dt ∈ℜx   
(t=1,...,T) is preprocessed into the modified input 
series ( ) Ht ∈ℜX  as follows: 

T 2
1 1 2 1

2 2 T
2 2 3 2

( ) (1, ( ) , ( ) , ( ) ( ), , ( ) ( ),

           ( ) , ( ) ( ), , ( ) ( ), ( ) ) ,
d

d d

t t x t x t x t x t x t
x t x t x t x t x t x t

=X x 

 

      (5)

where the dimension H is determined as H = 1 
+ d (d + 3)/2. The vector X(t) acts as the input of 
the first layer, and the identity function is used to 
activate each unit. The output of the hth (h = 1,⋅⋅⋅,H) 
unit in the first layer is defined as (1)Oh(t). 

Unit {c,k,k’,m} (c = 1,⋅⋅⋅,C; k’,k = 1,⋅⋅⋅,Kc; m = 
1,⋅⋅⋅,Mc , k) in the second layer receives the output of 
the first layer, weighted by the coefficient ', , ,

c
k k m hw

. The input (2)
', , ( )c

k k mI t  and the output (2)
', , ( )c

k k mO t  
are defined as:

(2) (1)
', , ', , ,

1
( ) ( ) ,

H
c c
k k m h k k m h

h
I t O t w

=

= ∑   (6)
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  (4)

Box 1.

Figure 2. The structure of R-LLGMN
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(2) (2)
', , ', ,( ) exp( ( )) ,c c

k k m k k mO t I t=   (7)

where C is the number of discriminating classes, 
Kc is the number of states in class c, and Mc , k 
denotes the number of GMM components in the 
state k of class c. In (7), the exponential function 
is used in order to calculate the probability of the 
input pattern.

The outputs of units {c,k,k',m} in the second 
layer are summed and input into a unit {c,k,k'} 
in the third layer. Also, the output of the fourth 
layer is fed back to the third layer. These are 
expressed as follows:

,
(3) (2)

', ', ,
1

( ) ( ) ,
c kM

c c
k k k k m

m
I t O t

=

= ∑
  (8)

(3) (4) (3)
', ' ',( ) ( 1) ( ) ,c c c

k k k k kO t O t I t= -   (9)

where (4)
' (0) 1.0c

kO =  is for the initial phase. The 
recurrent connections between the fourth and the 
third layers play an important role in the process, 
which corresponds to the forward computation; 
see Equation (3).

The activation function in the fourth layer is 
described as:

(4) (3)
',

' 1
( ) ( ) ,

cK
c c
k k k

k
I t O t

=

= ∑    (10)

'

(4)
(4)

(4) '
'' 1 ' 1

( )( ) .
( )c

c
c k
k C K c

kc k

I tO t
I t

= =

=
∑ ∑   (11)

In the fifth layer, the unit c integrates the out-
puts of Kc  units {c,k} (k = 1,⋅⋅⋅,Kc) in the fourth layer. 
The relationship in the fifth layer is defined as:

(5) (4)

1
( ) ( ) ,

cK
c c

k
k

I t O t
=

= ∑
   (12)

(5) (5)( ) ( ) .c cO t I t=    (13)

In R-LLGMN, the posterior probability of 
each class is defined as the output of the last layer. 

After optimizing the weight coefficients ', , ,
c
k k m hw  

between the first layer and the second layer, the 
NN can estimate the posterior probability of 
each class. Obviously, the R-LLGMN’s structure 
corresponds well with the HMM algorithm. R-
LLGMN, however, is not just a copy of HMM. 
The essential point of R-LLGMN is that the 
parameters in HMM are replaced by the weight 
coefficients ', , ,

c
k k m hw , and this replacement removes 

restrictions of the statistical parameter in HMM 
(e.g., 0 ≤ the transition probability ≤ 1, and standard 
deviations > 0). Therefore, the learning algorithm 
of R-LLGMN is simplified and can be expected 
to have higher generalization ability than that of 
HMMs. That is one of the major advantages of 
R-LLGMN.

A Maximum Likelihood Training
Algorithm

A  s e t  o f  i n p u t  v e c t o r  s t r e a m s 
( ) ( ) ( ) ( )( (1) , (2) , , ( ) )n n n n

nT=x x x x
  (n=1,...,N) and 

the teacher vector ( ) ( ) ( ) ( ) T
1( , , , , )n n n n

c CT T T=T    are 
given for the learning of R-LLGMN. We assume 
that the network acquires the characteristics of 
the data through learning if, for all the streams, 
the last output of stream ( )nx , namely (5) ( )c

nO T  , is 
close enough to the teacher signal T(n). The objec-
tive function for the network is defined as:

( ) (5)

1 1 1
log ( ) .

N N C
n c

n c n
n n c

J J T O T
= = =

= = -∑ ∑∑
 (14)

The learning process attempts to minimize 
J, that is, to maximize the likelihood that each 
teacher vector T(n) is obtained for the input stream 
x (n).

The weight modification ∆ ', , ,
c
k k m hw  for ', , ,

c
k k m hw  

is defined as:

∆ =', , ,
1 ', , ,

,
N

c n
k k m h c

n k k m h

Jw
w=

∂
∂∑

   (15)
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in a collective learning scheme, where η > 0 is the 
learning rate. Due to the recurrent connections 
in R-LLGMN, a learning algorithm based on 
the BPTT algorithm has been applied. It is sup-
posed that the error gradient within a stream is 
accumulated, and weight modifications are only 
computed at the end of each stream; the error is 
then propagated backward to the beginning of the 
stream. The term 

', , ,

n
c
k k m h

J
w

∂

∂
 in (15) can be defined as 

seen in Box 2, where Γ(c ', k '') ,  (c , k ) is defined as:

k k
( ', ''),( , )

1 ( ' ;  '' )
,

0 (otherwise)c k c k

c c= =
Γ = 

  (17)

and ( ) '
''( )n c

k t∆  is the partial differentiation of Jn to 
(4) '

'' ( )c
k nO T t-  (see Box 3 for Equation (19) ):

( )
( ) ' '

'' (5) '(0) ,
( )

n
n c c

k c
n

T
O T

∆ =    (18)

It should be mentioned that all intermediate 
values of the R-LLGMN’s feedforward compu-
tation are used in the calculation of Equations 
(16)-(19).

EMG PAttErN rEcOGNItION
UsING r-LLGMN

The structure of the proposed EMG pattern rec-
ognition system is shown in Figure 3. This system 
consists of three parts in sequence: (1) EMG sig-
nal processing, (2) recurrent probabilistic neural 
network, and (3) discrimination rule.

1. EMG signal processing
 The EMG signals are processed to extract 

the feature patterns. In this study, feature 
patterns extracted from filtered EMG signals 
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Box 2.
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Box 3.
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and raw EMG signals are used for motion 
discrimination. Also, the force information 
is extracted for motion onset detection and 
to determine the speed of the motion clas-
sified.

2. Recurrent probabilistic neural network
 The R-LLGMN described in the previous 

section is employed for motion discrimi-
nation. Using samples labeled with the 
corresponding motions, R-LLGMN learns 
the non-linear mapping between the EMG 
patterns and the forearm motions. Given an 
EMG feature stream with length T, the output 
(5 )Oc (T) (c = 1,⋅⋅⋅,C) presents the posterior 
probability of each discriminating motion.

3. Discrimination rule
 In order to recognize whether the motion has 

really occurred or not, the force information 
σ(t) is compared with a prefixed motion 
appearance threshold Md . The motion is 
considered to have occurred if σ(t) exceeds 
Md . The entropy of R-LLGMN’s outputs is 
also calculated to prevent the risk of mis-
discrimination. The entropy is defined as:

(5) (5)
2

1
( ) ( ) log ( ) .

C
c c

c
H t O t O t

=

= -∑
  (20)

 If the entropy H(t) is less than the discrimi-
nation threshold Hd , the specific motion 
with the largest probability is determined 

according to the Bayes decision rule. If not, 
the determination is suspended. 

The discriminated motion can be used as con-
trol commands for HMIs, for example, powered 
prosthetic limbs. 

Experimental conditions

Five subjects (amputee subjects A and B, and 
normal subjects C, D, and E) participated in this 
study. Six pairs of Ag/AgCl electrodes (NT-511G: 
NIHON KOHDEN Corp.) with conductive paste 
were attached to the forearm and upper arm 
(Flexor Carpi Radialis (FCR), Extensor Carpi 
Ulnaris (ECU), Flexor Carpi Ulnaris (FCU), 
Biceps Brachii (BB), Triceps Brachii (TB): two 
pairs on FCR and one pair on the others). The 
subjects were asked to continuously perform six 
motions (C = 6) : flexion, extension, supination, 
pronation, hand grasping, and hand opening. The 
motions are shown in Figure 4. 

The differential EMG signals were amplified 
(70 [dB]) and filtered out with a low-pass filter 
(cut-off frequency: 100 [Hz]) by a multi-telemeter 
(Web5000: NIHON KOHDEN Corp.), as shown 
in Figure 5, then digitized by an A/D converter 
(sampling frequency: 200 [Hz]; quantization: 12 
[bits]).

In the experiments, the network structure of 
R-LLGMN is set as (C = 6), Kc = 1 (c = 1,⋅⋅⋅C), 

Figure 3. Structure of the proposed EMG pattern recognition system
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and the component for each unit in the third 
layer is one. The parameters used are chosen to 
make conditions of comparison experiments as 
equal as possible. The lengths of training sample 
streams, Tn (n = 1,⋅⋅⋅,N), are set as T, which was 
determined with respect to the EMG features. 
In accordance with previous researches on EMG 
pattern classification (Tsuji et al., 1993; Fukuda 
et al., 2003), the determination threshold Hd was 
set to 0.5, and the motion appearance threshold 
Md to 0.2. All pattern recognition experiments 
were conducted off-line.

Pattern recognition of Filtered EMG 
signals

First, motion discrimination experiments using 
filtered EMG signals were conducted to examine 
the performance of the proposed method. In the 
experiments, the training sample consists of 20 
EMG patterns extracted from the filtered EMG 
signals for each motion. 

Six channels of EMG signals (L = 6) are recti-
fied and filtered by a second-order Butterworth 
filter (cut-off frequency: 1 [Hz]). The filtered 
EMG signals are defined as FEMGl(t) (l = 1,⋅⋅⋅,L) 
and are normalized to make the sum of L chan-
nels equal to 1:

' '' 1

( )( ) ( 1, ) ,
( )

st
l l

l L st
l ll

FEMG t FEMGx t l L
FEMG t FEMG

=

-
= =

-∑


      (21)

where st
lFEMG  is the mean value of FEMGl(t) 

measured while the arm is relaxed. The feature 
vector x(t) = [x1(t),x2 (t),⋅⋅⋅xL(t)] is used for the input 
of the neural classifier, R-LLGMN, where the 
dimension of R-LLGMN’s input, d, is set as d = 
L. In this study, it is assumed that the amplitude 
level of EMG signals varies in proportion to muscle 
force. Force information σF (t) for the input vector 
x(t) is defined as follows:

max
1

( )1( ) ,
stL

l l
F st

l l l

FEMG t FEMGt
L FEMG FEMG=

-
=

-∑  (22)

where max
lFEMG  is the mean value of FEMGl(t) 

measured while maintaining the maximum arm 
voluntary contraction. 

An example of the discrimination results of 
subject A is shown in Figure 6. The subject was an 
amputee (51-year-old male), whose forearm, three 
cm from the left wrist joint, was amputated when 
he was 18 years old as the result of an accident. He 
has never used EMG controlled prosthetic limbs 
and usually uses a cosmetic hand. In the experi-
ments, he was asked to perform six motions in 
the order continuously for six seconds. Figure 6 

Figure 4. Six motions used in the experiments Figure 5. The multi-telemeter (Web5000) and 
electrodes (NT-511G) used in the experiments
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plots six channels of the input EMG signals, the 
force information σF (t), the entropy H(t), and the 
discrimination results. The labels of the vertical 
axis in the discrimination results correspond to 
the motions shown in Figure 4, and SUS means 
that the determination was suspended. The gray 
areas indicate that no motion was determined 
because the force information was less than Md . 
Incorrect determination was eliminated using the 
entropy. Figure 6 demonstrates that the proposed 
method achieves high discrimination accuracy 
with filtered EMG signals during continuous 
motion.

The discrimination accuracy for five subjects 
was then investigated, and LLGMN and an MLP 
classifier were used for comparison. The same 
preprocessing method and discrimination rule 

were applied to the experiments using LLGMN 
and MLP. The number of units in the input layer 
of LLGMN was equal to the dimension of input 
signal (L). Units in the hidden layer corresponded 
to the Gaussian components in GMM, the number 
of which was set in the same manner as for the 
R-LLGMN. The output layer included C units, 
and each unit gave the posterior probability for 
the input pattern. In contrast, MLP had four lay-
ers (two hidden layers), and the units of the layers 
were set at 6, 10, 10, and 6. Each output of MLP 
corresponded to a motion, and all six outputs were 
normalized to make the sum of all outputs equal 
1.0 for comparison with R-LLGMN and LLGMN. 
The learning procedure of MLP continued until 
the sum of the square error was less than 0.01, 
where the learning rate was 0.01. However, if the 

Figure 6. Example of the discrimination results for filtered EMG signals (subject A)
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sum of the square error after 50,000 iterations 
was still not less than 0.01, the learning procedure 
was stopped. In all three methods, ten different 
sets of initial weights (all randomized between 
[0, 1]) were used.

Discrimination rate, which is defined as the 
ratio of correctly classified data to the total test 
set, is used to evaluate discrimination accuracy of 
three methods. The mean values and the standard 
deviations of the discrimination rates are shown in 
Table 1. It can be seen that R-LLGMN achieved the 
best discrimination rate among all three methods 
and had the smallest standard deviation.

Also, the classification results were examined 
by altering the experiment conditions, such as 
the length of sample data. Experiments were 
performed using various lengths of sample data. 
For each sample data, R-LLGMN was trained 
with ten different sets of initial weights, which 
were randomly chosen in the range [0, 1]. The 
mean values of the discrimination rates for each 
length are shown in Figure 7, where the standard 
deviations are all very small, close to 0. It can be 
seen from Figure 7 that the discrimination rate 
maintains a high level when the sample data is of 
an appropriate length (T). However, if T > 5, it is 

DR : Discrimination rate [%], SD : Standard deviation [%]

Type of the methods

DR
SD

DR
SD

DR
SD

DR
SD

DR
SD

Subject A
(Amputee)

MLP

46.5
12.3
44.2
10.4
69.8
10.0
69.2
7.0

73.4
7.9

LLGMN

82.8
0.0

88.5
0.0

88.7
0.2

89.3
0.1

94.0
5.5

R-LLGMN

89.3
0.4

93.0
0.1

93.5
0.0

92.8
0.0

99.1
0.0

Subject B
(Amputee)
Subject C
(Normal)
Subject D
(Normal)
Subject E
(Normal)

Table 1. Discrimination results of five subjects with filtered EMG signals

Figure 7. Discrimination rates for various data lengths (subject B)
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too long to train R-LLGMN using filtered EMG 
signals. The discrimination rate tends to deterio-
rate because R-LLGMN, which was trained using 
the long-length sample data, failed to discriminate 
the switching of motions.

Pattern recognition of raw EMG 
signals

This subsection presents pattern recognition ex-
periments of time series of raw EMG signals. In 
the previously proposed methods for classifying 
the intended motion of an operator, the filtered or 
smoothed EMG signals (Fukuda et al., 1997, 2003; 
Kelly et al., 1990; Tsuji et al., 1993, 2000) or the 
extracted characteristics in a fixed time window 
(Hiraiwa et al., 1989; Hudgins et al., 1993) have 
been used as the input vector to the NN classifier. 
However, these signal-processing steps result in 
considerable phase delay and time delay caused 
by the low-pass filtering and the time window 
operation. To avoid such delay, raw EMG signals 
without any preprocessing are used as the input 
to R-LLGMN. The experiments were performed 
with the subjects (A, B, C, D, and E) who had 
experience in manipulating the EMG signals.

As raw EMG signals, six channels of EMG 
signals (L=6) sampled from the input of multi-
telemeter are denoted by REMGl(t) (l = 1,⋅⋅⋅,L). 
For the case of raw EMG signals, force informa-
tion σR (t) is obtained calculating moving average 
within the length T: 

max
1

1 ( )( ) ,
L

i
R

l l

REMG tt
L REMG=

= ∑    (23)

1

0

1( ) ( ) ,
T

l l
j

REMG t REMG t j
T

-

=

= -∑  (24)

where 
max
lREMG  is the premeasured integral EMG 

of each channel under the maximum voluntary 
contraction. Also, it should be noted that REMGl(t 
– j) = 0 when t – j < 0. 

The input vector x(t) (t = 1,⋅⋅⋅,T) of R-LLGMN 
is normalized REMGl(t) with σR (t) as 

1( ) ( ) ( ) .l R lx t T REMG t-=    (25)

Here, the normalization enables R-LLGMN 
to discriminate motions from a pattern of all 
channels as well as from the amplitude of the 
raw EMG signals. 

In pattern recognition experiments of raw 
EMG signals, the length of training sample stream 
T is set as 20. Eight sample streams are used for 
each motion. The threshold for motion onset 
detection Md is 0.155. 

Figure 8 provides an example of the clas-
sification results of subject A. The figure shows 
six channels of the raw EMG signals, the force 
information σR (t), the entropy H(t) calculated 
from the output probability of R-LLGMN, and 
the classification results of the R-LLGMN. The 
discrimination rate was about 95.5% in this ex-
periment. It can be seen that R-LLGMN generates 
acceptable classification results during continuous 
motion, and the entropy is low during motions 
except for the motion one (Flexion). It indicates 
that R-LLGMN can discriminate the hand and 
forearm motions from the raw EMG signals, even 
for control purposes.

Comparisons were conducted with discrimi-
nation results of MLP, LLGMN, and R-LLGMN 
using filtered EMG signals. It should be noted that 
due to the stochastic nature of raw EMG signals, 
MLP and LLGMN could not learn motion patterns 
of raw EMG signals. The network structures of 
MLP and LLGMN were set to the same as those in 
pattern recognition experiments of filtered EMG, 
and the beginning and ending of motions were rec-
ognized according to the force information σR (t). 
The discrimination threshold Hd was not used in 
the comparison, so that all classification results 
were used for comparison. Each experiment was 
repeated ten times with different randomly chosen 
initial weights. Table 2 depicts the mean values 
and the standard deviations of the discrimina-
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Figure 8. Example of the discrimination result for raw EMG signals (subject A)

DR : Discrimination rate [%], SD : Standard deviation [%]

Type of the methods

DR
SD

DR
SD

DR
SD

DR
SD

DR
SD

Subject A
(Amputee)

70.1
10.8
80.5

8.1
78.9

4.1
75.8

4.5

66.1
14.0

MLP
(Filtered EMG)

R-LLGMN
(Raw EMG)

91.2
1.3

94.1
0.4

0.0

90.4

93.8

0.9
91.0

1.8

89.3
0.0

82.9
0.0

88.3
0.0

85.9
0.0

89.8
0.0

LLGMN
(Filtered EMG)

92.5
0.0

94.2
0.0

97.4
0.0

90.7
0.0

96.1
0.0

R-LLGMN
(Filtered EMG)

Subject B
(Amputee)
Subject C
(Normal)
Subject D
(Normal)
Subject E
(Normal)

Table 2. Motion discrimination results for raw EMG signals, comparing with methods using filtered 
EMG signals
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tion rates for five subjects. Due to the filtering 
processes, onsets of the filtered EMG signals are 
delayed, and the EMG patterns vary significantly 
in time domain during the transient phase. Since 
MLP cannot deal well with time-varying patterns, 
MLP’s discrimination result is the worst among 
these methods. Although LLGMN shows better 
discrimination accuracy than MLP due to the 
statistical model incorporated in its structure, 
it still provides poor discrimination accuracy 
since the model is static. Consequently, it is can 
be concluded that phase delay due to the filtering 
processes is one of the major causes of degrada-
tion in the discrimination results in cases of MLP 
and LLGMN. In contrast, R-LLGMN provides 
superior discrimination results for both the filtered 
EMG signals and the raw EMG. Also, we found 

that patterns of raw EMG signals are much more 
complicated than that of filtered EMG signals, 
and training and estimation of R-LLGMN using 
raw EMG signals are more difficult. Therefore, 
the classification performance of R-LLGMN with 
filtered EMG signals is a little higher than that 
using raw EMG signals. However, since no signal 
processing is used, the latter has a faster response. 
There is thus a trade-off between discrimination 
accuracy and response speed.

The response time of raw EMG-based motion 
discrimination was further investigated, and the 
proposed method and traditional classifiers (MLP 
and LLGMN) were compared. Figure 9 illustrates 
the signals magnified from 6.3 s to 9.9 s in Figure 
8 during the wrist extension motion. This figure 
depicts the EMG signal of the channel 3, the fil-

Figure 9. Changes of the discrimination results by three types of neural networks (subject A)
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tered EMG signal that is rectified and filtered out 
by the second-order Butterworth low-pass filter 
(cut-off frequency: 1.0 [Hz]), the force informa-
tion σR (t), and the discrimination results of three 
comparison methods. The MLP and LLGMN 
used the features extracted from filtered EMG 
signals as the input, while the R-LLGMN achieved 
motion discrimination based on the raw EMG 
signals. It can be seen from the figure that there 
is a considerable phase delay between the raw 
EMG and the filtered EMG signals, which causes 
the misdiscrimination in the results of MLP and 
LLGMN. In contrast, using the raw EMG signals, 
R-LLGMN achieves higher discrimination accu-
racy than the others, and a correct classification 
is made just after the beginning of motion. It 
was also found that the discrimination rates of 
both MLP and LLGMN decreased considerably 
when the cut-off frequency of the low-pass filter 
increased. The increase of the cut-off frequency 
results in filtered EMG signals containing high 
frequency components, so that the learning of the 
NNs becomes very difficult.

Then, discrimination accuracy during the be-
ginning and ending of motions was investigated. 
In these experiments, EMG signals during 100 
msec from onset and 100 msec before ending 
of each motion were used. Similarly, MLP and 

LLGMN using filtered EMG signals were used 
for comparison. Table 3 presents the discrimina-
tion results for five subjects using three different 
methods. The mean values and the standard de-
viations of the discrimination rates are computed 
for ten randomly chosen initial weights. From this 
table, it can be seen that R-LLGMN attained the 
best discrimination rates during the beginning 
and ending of motions; therefore, the R-LLGMN 
provides superior response performance. 

DIscUssIONs

A new EMG pattern recognition method using 
R-LLGMN is proposed to improve discrimina-
tion accuracy when dealing with non-stationary 
EMG signals. R-LLGMN performs both the 
filtering process and pattern classification within 
the same network architecture, so the proposed 
method outperforms the previous methods with 
filtered EMG and raw EMG patterns. What is 
even more encouraging is that the response time 
of discrimination results can also be shortened 
by using raw EMG signals.

In the studies on human-machine interfaces 
(HMIs), it is widely believed that the response 
time is an important aspect, especially for practi-

DR : Discrimination rate [%], SD : Standard deviation [%]

Type of the methods BPNN LLGMN R-LLGMN

DR
SD

DR
SD

DR
SD

DR
SD

DR
SD

Subject A
(Amputee)

67.2
11.0
49.4
11.5
52.8
3.8

64.4
3.0

30.4
13.6

63.7
0.2

50.0
0.0

58.3
0.0

63.3
0.0

58.3
4.1

75.0
0.0

91.7
0.0

73.8
0.0

66.7
0.0

89.6
0.3

Subject B
(Amputee)
Subject C
(Normal)
Subject D
(Normal)
Subject E
(Normal)

Table 3. Discrimination results for five subjects
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cal application systems. For HMIs used in daily 
activities, it has been mentioned that techniques 
for real-time classification are needed in order 
to decrease global time delay of response, which 
would reduce the operator’s mental burden and 
increase the range of applications and number of 
potential users (Chang et al., 1996; Vuskovic & 
Du, 2002). A classification system based on digital 
signal processors (DSP) was used to realize the 
pattern classification algorithm for fast process-
ing (Chang et al., 1996). Vuskovic and Du (2002) 
attempted to simplify a fuzzy ARTMAP network 
used for EMG classification, which resulted in 
overall smaller computational times. On the other 
hand, since the EMG signals include high-fre-
quency components, adequate signal processes 
such as low-pass filtering are necessary in order 
to extract meaningful information for HMIs. 
Actually, this low-pass filtering process increases 
the time delay. 

In contrast to these previous studies, which 
focus on reduction of the computational time 
(complexity) of classifiers, a pattern recognition 
technique that directly uses raw EMG signals is an 
interesting choice. Given the experimental results 
in the previous section, it is expected that improved 
response performance is possible by adopting the 
proposed raw EMG pattern recognition scheme 
into traditional HMIs, which use filtered EMG 
patterns (Fukuda et al., 1997, 2003; Kelly et al., 
1990; Tsuji et al., 1993, 2000). Further studies 
should focus on this idea.

This chapter introduced R-LLGMN in or-
der to make effective use of the non-stationary 
(time-varying) characteristics in EMG signals. 
In recent years, time-frequency analysis has 
attracted increasing attention for representing 
the non-stationary essence of frequency domain 
(Englehart et al., 1999, 2001; Hussein & Granat, 
2002). Since the wavelet transform results in a 
good time-frequency resolution, it has become 
a very popular feature extraction method for 
time-frequency representation of EMG signals. 
Based on the idea of building prior information 

into neural network design, the algorithm of 
wavelet transform can be incorporated into the 
probabilistic neural network, so that the PNNs 
could process frequency information of EMG 
signals more effectively. 

sUMMArY

This chapter proposes a new EMG pattern recog-
nition method based on a recurrent log-linearized 
Gaussian mixture network (R-LLGMN). Because 
of the recurrent connections in the R-LLGMN’s 
structure, the temporal information of EMG 
signals can be used to improve discrimination 
accuracy. 

To examine the discrimination capability and 
accuracy of the proposed method, EMG pattern 
recognition experiments were conducted with 
five subjects. In the experiments, the proposed 
method achieved high discrimination accuracy 
for varying EMG signals, and its discrimination 
results are superior to those of the LLGMN and 
MLP classifiers. We found that the discrimination 
results change when different lengths of sample 
stream T are used. The length T should be well 
modulated according to the input signals. For 
example, to discriminate filtered EMG signals, 
T should be less than five.

Even more encouraging is the outcome of EMG 
pattern recognition experiments using the non-
stationary time series of raw EMG signals. Results 
of these experiments demonstrate that R-LLGMN 
performs both the filtering process and pattern 
recognition within the same network architecture 
and can realize a relatively high discrimination 
rate that is good enough for control purposes. It 
should be noted that there is a trade-off between 
discrimination accuracy and response speed when 
using R-LLGMN as a classifier. In practical ap-
plications, such as prosthetic control, the latter 
may be preferred.
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