A Novel Variable Selection Method Based on a Partial KL Information Measure and Its Application to Channel Selection for Bioelectric Signal Classification

Taro SHIBANOKI*, Keisuke SHIMA*, Toshio TSUI**, Takeaki TAKAKI*, Akira OTSUKA** and Takaaki CHIN**

This paper proposes a novel variable selection method based on the KL information measure, and applies it to optimal channel selection for bioelectric signal classification. Generally, the accuracy of classification for bioelectric signals is greatly influenced by measuring positions of the signals as well as individual physical abilities of a user. Therefore, it is effective for classification to select optimal positions for each user in advance. In the proposed method, the probability density functions (pdfs) of measured data are estimated through learning of a multidimensional probabilistic neural network (PNN) based on the KL information theory. Then, a partial KL information measure is newly defined to evaluate contribution of each dimension in the data. The effective dimensions can be selected eliminating ineffective ones based on the partial KL information in a one-by-one manner.

In the experiments, the proposed method was applied to EMG electrode selection with six subjects (including an amputee), and the effective channels were selected from all channels attached to each subject's forearm. Experimental results showed that the number of channels was reduced by 36.1 ± 12.5 [%], and the average classification rate using selected channels by the proposed method was 98.99 ± 1.31 [%]. These results indicated that the proposed method is capable to select effective channels (optimal or semi-optimal) for accurate classification.

Key Words: Kullback-Leibler information, variable selection method, pattern classification, Electromyogram

1. 序 論

筋電図 (Electromyogram: EMG) や脳波 (Electroencephalogram: EEG) などの生体信号から人間の内情状態や意図する動作を正確に推定、識別できれば、さまざまな機器の制御に応用できる可能性がある。従来、生体信号の識別問題に関して AR モデル1)や判別関数2)などを用いた方法が検討されており、近年では、ニューラルネット (Neural Network: NN) を用いた研究が盛んである3), 4)。NN は学習によって任意の非線形関数を獲得できることから、非線形性を

* 広島大学大学院工学研究科 東京島市広成 1-4-1
** 北海道大学保健福祉学部 札幌市南区札幌 1-4-1
*** 大阪府立総合リハビリテーションセンター 神戸市西区淡路町
* Graduate School of Engineering, Hiroshima University, 1-2-1 Kagamiyama, Higashi-Hiroshima
** Faculty of Health and Welfare, Prefectural University of Hiroshima, 1-1 Gatsuren-cho, Mihara
*** Hyogo Rehabilitation Center, 1070 Akobono-cho, Nishiku, Kobe
(Received June 25, 2009)
(Revised October 9, 2009)

有する生体信号識別に有効とされ、モンタ переменの数や個人差に対応できるという特徴をもつ。特に Tsui らは混合正規分布モデル (Gaussian Mixture Model: GMM) を内包した確率 NN である Log-Linearized Gaussian Mixture Network (LLGMN)5)を提案し、生体信号識別への有効性を確認している6), 7)。

生体信号の識別に基づく機器制御の際には、1) 操作者個人ごとに適切な生体信号の計測位置を決定し、2) その位置にて電極を貼付することで操作が可能となる、3) 操作者間のためのトレーニングも不要でできる、4) はそれぞれ多大な時間を要する可能性があり、従来より時間低減のためのさまざまな試みが行なわれている。たとえば2)の電極贴付に関しては、多数の電極が1枚のシート上に配置されたシート型の電極など、容易にかつ短時間に貼付可能な電極が数多く提案されている9), 10)。同様に、3) 生体信号を用いた機器制御への適用に関しては、操作者自身の EMG 制御能力向上のための効果的なトレーニング方法が検討されている11), 12)。しかししながら、適切な位置に電極を貼付しなければ、その後のトレーニングの効率に大きな影響を及ぼし、電極位置の選定が非常に重要である。本論文
では、操作者に貼付した電極の中心から機器制御に有効な電極のみを選定する問題をとりあげる。

全体信号の計測位置の選択に関する方法論の1つに、計測信号の特徴量から識別に有効な電極を選択する方法がある。たとえば中谷ら8)、伊藤ら12)は、被験者が実施した動作ごとにEMGの振幅が最も大きく変化する位置を最適な電極位置として選択する手法を提案している。また、複数の電極を用いたセンサアレイをいくつかのセンサをランダムに選択し、正準誤差分析9)やテンプレートマッチング13)などを用いて動作識別を繰り返すことで最適な電極位置を発見する試みもなされている。ただし、計測した信号の特性量のみによる評価では、必ずしもパターン識別に有効な電極を選択することは限らない。また、被験者ごとに適当な電極位置を発見するためにはできるだけ多くの電極を評価する必要があり、センサ数が増大すると選択するセンサの組合せ数が膨大になってしまうという問題がある。全組合せを評価することなく被験者に適した電極を選択するためには、各センサが識別に与える影響度を評価し、それに基づいてセンサを選択する必要がある。

各センサの計測データからどのような位置のセンサが識別に有効であるかを評価する問題は、識別に有効な変数の選択問題と考えることができる。変数選択に関する試みには、WilksのA統計量14)や、森らによるRV係数を用いて不要な変数を逐次削減する手法15)、IshikawaによるNNの学習中に不要な素子への重みを減じ去る手法16)などがある。しかし、これらの手法は生体電極の選定に応用した例は見られない。また、与えられたデータに対する評価を前提としているため、時々制約と変化する生体情報などの評価に用いる際には未知データに対する汎化性を極め難しい恐れがある。

本論文では、Kullback-Leibler（KL）情報量に基づく新し変数選択法を提案し、EMG計測のための電極選択への応用することを考える。本手法は、まず計測された信号を確率変数と考え、KL情報量に基づいた確率NNの学習によってその確率密度関数を推定する。そして識別に有効な変数の評価指標として、新たにA統計量に基づくKL情報量を定義し、識別に有効でない変数を逐次削減させる。これにより、すべての組合せを評価することなく識別に有効な電極のみを選択できと考えられる。

以下、2章で識別に有効な変数を選択するための提案法について述べる。3章で提案法を電極選択に応用したEMG識別法の概要を示す。そして4章で提案法による電極選択・動作識別実験の結果を示し、本手法の有効性を検証する。

2. 偏Kullback-Leibler（KL）情報量に基づく変数選択法

識別に有効な変数の選定には、変数選択後の変数を用いて識別がどの程度可能かを評価する必要がある。ここでは、新しく提案する偏KL情報量に基づく変数選択法について説明する。
Fig. 1 Structure of the proposed channel selection method

E_a と E_f (j = argmax(E_f)) を比較し、E_f ≤ E_a であれば削除を行なわずに終了する。E_f > E_a の場合には次元の元のベクトルから除去、$x^r = x^{r+1} \ (ただし、r ≤ L - 1)$ として (1) に戻る。以上の手続きに基づき識別に有効でない次元を削除していくことで、最終的に有効に有効な次元のみ (R 次元) が選択される。

3. EMG 電極選択への応用

ここでは、提案する変数選択法を EMG 電極選択へ応用し、識別に有効な電極のみを選択する方法について説明する。Fig. 1 にその概要を示す。EMG 電極選択では、まず被験者の動作を Tsuji らによって提案された Log-Linearized Gaussian Mixture Network (LLGMN) 5) を用いて学習し、同時に識別に有効な電極のみを選択する。動作識別の際は選択された電極のみを選択して解析者が実行した動作の識別を行うことができる。

3.1 特徴抽出

まず、L 対の対極表面電極を用いて EMG を計測する。計測した EMG はサンプリング周波数を 1kHz で A/D 変換し、各チャネルごとに全波成形、2 次のディオナリズムフィルタ (カットオフ周波数 1 Hz) に透し、得られた n 番目のサンプルを $EMG(n)$ (l = 1, ..., L) とする。このとき、$EMG(n)$ の各チャネル和が 1 となるように正規化を行ない、動作決定に用いる特徴パワーベクトル $x(n) = [x_1(n), x_2(n), ..., x_L(n)] \in \mathbb{R}^L$ の各要素 $x_l(n)$ (l = 1, ..., L) を求める。

$$x_l(n) = \frac{EMG_l(n) - EMG_l^{avg}}{\sum_{l=1}^{L} (EMG_l(n) - EMG_l^{avg})} \quad (3)$$

ただし、EMG_l^{avg} は静止時で取得した $EMG_l(n)$ の平均値である。

3.2 学習・電極選択

算出した特徴ベクトルを入力とし、LLGMN で学習を行なう。LLGMN は GMM で確率密度関数の対数線形化モデルに基づいた確率 NN の一種である 5)。LLGMN は GMM を対数線形化してネットワーク構造に展開しており、サンプルデータが収束統計分布を GMM に従って学習的に推定し、入力 $x(n)$ に対する事後確率 $Y(n) = [Y_1(n), Y_2(n), ..., Y_K(n)]^T$ を算出できる 5)。

LLGMN の学習には誤差逆伝播法に基づく最尤学習を用いている。つまり、n 番目の入力ベクトルに対して、教師信号ベクトル $T(n) = [T_1(n), ..., T_n(n), ..., T_K(n)]^T$ が与えられた場合を考える。LLGMN では N 個のサンプルデータ $x(n)$ (n = 1, ..., N) を用いて、対数極大化するように学習を行なう。LLGMN の評価関数は従来、対数尤度関数に基づいていたが 5)。本論文では (1) 式の KL 情報量を新たに用いる。出力値 $Y_k(n)$ が事後確率 $P(k|x(n))$ に対応することを考えると、評価関数 J は

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} T_k(n) \ln \frac{T_k(n)}{Y_k(n)} \quad (4)$$

を用い、これを最小化するように学習を進める。KL 情報量が最小化でき、学習後のネットワークはデータ分布をよく推定できることを意味する。そのため、LLGMN の評価関数を用いて学習と同時に EMG 識別に有効な次元 (EMG 計測位置) を選択することができる。

電極選択では、計測した EMG 信号から算出した特徴パワーベクトル $x(n) = [x_1(n), ..., x_N(n)]$ を初期ベクトル集合として、2 2 と述べた変数選択法に基づき、識別に寄与しないとみなされる次元を順に削除していく。電極選択終了後、最終的に r は削除した電極数、R は得られた電極数となる。特徴パワーベクトルの各次元は信号の計測位置を意味するため、提案法を用いて識別に有効な電極位置が選択できる。

3.3 識別

EMG 識別の際は、ネットワークの第 3 層の出力値が各クラスに対する事後確率であることから、最も確率が高まるクラス k を識別結果とするパラメタ識別を行う。ここで、暖昧な識別結果による誤認識を防ぐために、LLGMN の出力に関するエントロピーを次式を用いて算出し、識別判定処理を行なう。

$$H(n) = -\sum_{k=1}^{K} Y_k(n) \ln Y_k(n) \quad (5)$$

エントロピーは情報の暖昧さを表す評価値である。識別判定時には、あらかじめ設定した閾値 H_a と $H(n)$ を比較し、$H(n) < H_a$ であれば出力 $Y_k(n)$ (k = 1, ..., K) が最大となるクラスに対応する動作を識別結果とする。$H(n) \geq H_a$ であれば、暖昧な識別として識別を保留する。

4. 電極選択実験

4.1 実験条件

提案する電極選択法の有効性を検証するために、EMG 識別実験を行なった。被験者は飛行術を専門の男子大学生 2 名 (B, C)、
Fig. 2 Locations of electrodes

Fig. 3 Forearm motions used in the experiments

Fig. 4 An example of measured signals

Fig. 5 Relationships between classification rates and KL information, A statistic and partial A statistic (Subject A). Note that the standard deviations are less than 0.27% for the classification rate and 0.06% for the KL information.
す。図では、KL 情報量が 6 に近い値をとる場合は高い識別率を保っており、KL 情報量の増大とともに識別率が低下する傾向が確認できる。また、電極を 3 個から 2 個へ減少させた場合は大きな識別率が低下している。このとき、偏 KL 情報量が 0.01 となり被験者 A では提案法によって最終於的に 3 対の電極が選ばれた。

一方、Fig.5 (b) は、同じデータに対して偏 A 統計量と線形判別分析を用いた場合の結果である。横軸は (a) と同様であり、縦軸は識別率と偏 A 統計量を表している。提案法と同様に、識別率に関しては電極を 3 個から 2 個へ減少させた場合に低下が見られるものの、5 対から 4 対に減少させた場合において偏 A 統計量が大幅に減少している。これはデータ間の相関が近いため、線形判別ではデータの判別が難しいなる可能性を示唆している。このとき F 値が 26.5 となり、偏 A 統計量を用いた電極選択では 5 対の電極が最終於的に選択された。

Table 1 に全被験者について提案法および偏 A 統計量により選択された電極対を示す。偏 A 統計量を用いた場合では提案法を用いた場合と比較して 6 対から 4 対に電極を削除できていないのがわかる（被験者 A E）。また、被験者 F の場合も同様に 4 対から 1 対しか電極を削除できていない。提案法による電極の削除率は 36.1 ± 12.5% であった。以上の結果より、偏 KL 情報量は偏 A 統計量に比べてより多くの電極を削除できると考えられる。

次に、本手法によって選択された電極の最適性を検証するために、5 対の電極から最適な数と位置を選択する場合にとり得る全組合せ（被験者 A E、27 1 63 通り）、および 4 対の電極から選択する場合の全組合せ（被験者 F、27 1 15 通り）に対して同様の実験を行った。実験結果は Table 2 に示す。実験結果は、提案法により選択された電極の結果に一致している。Table 2 から、どの被験者においても提案法を用いて 3 番目までに高い識別精度を有する電極を選択できていると考える。このことから、すべての組合せを調べることなく最適に近い準最適な組合せを求めることができることが確認できた。今後、実験では 6 対を選用したとき、たとえば 96 対から最適な電極の数と位置を選択する問題を考えた場合には、全組合せの数は 296 1 790 5 10 通りとなり、計算に莫大な時間がかかる。それに対し、提案法を用いた場合には計算回数が大幅となる場合でも、わずかに

Table 1 Selected channels using proposed method and partial A statistic

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SCKL</td>
<td>2.3, 6</td>
<td>2.4, 5, 6</td>
</tr>
<tr>
<td>SCX</td>
<td>2.3, 4, 5, 6</td>
<td>2.3, 4, 5, 6</td>
</tr>
<tr>
<td>Sub. D</td>
<td>Sub. E</td>
<td>Sub. F</td>
</tr>
<tr>
<td>SCHL</td>
<td>1.2, 3, 5, 6</td>
<td>2.3, 5, 6</td>
</tr>
<tr>
<td>SCHX</td>
<td>1.2, 3, 4, 5, 6</td>
<td>1.2, 3, 4, 5, 6</td>
</tr>
</tbody>
</table>

Fig. 6 Classification rates using all channels and selected channels

\[\sum_{n=2}^{96} n = 4655 \approx 4.7 \times 10^4 \] で選定が終了し、大幅に計算回数を削減できることがわかる。

4.2.2 EMG 識別精度の検証

提案法によって得られた電極対から学習データを用いて識別器を構成し、新しく得られたデータを識別する。提案法の特徴は、電極数を削減することにより、新しく得られたデータを用いて識別器を構成する。新しく得られたデータを用いて識別器を構成する。新しく得られたデータを用いて識別器を構成する。新しく得られたデータを用いて識別器を構成する。新しく得られたデータを用いて識別器を構成する。新しく得られたデータを用いて識別器を構成する。新しく得られたデータを用いて識別器を構成する。新しく得られたデータを用いて識別器を構成する。
たのトレーニングシステムと統合することでより効率的に電極を選択する方法を検討していく予定である。

謝辞 本論文の執筆にあたり、多大なご助言とデータ収集にご協力いただきました重田元昭氏に深く感謝の意を申し上げます。また、本研究の一部は日本学術振興会の21世紀COEプログラムの助成によるものであり、ここに改めて謝意を表します。

参考文献
14) 田中, 重村: 筋電信号解析ハンドブック 多変量解析, 共立出版 (1995)
15) 森, 重村, 田中: 主成分分析における多变量手法を用いた筋電波の解釈, 実験機器計装学会, 7-1, 47-56 (1994)

17) 内藤, 柳井: 多変量解析の基礎, 東洋経済新報社 (1972)

[著者紹介]

王 軒 太 郎

2008年広島大学工学部情報工学科卒業。現在広島大学大学院工学研究科情報システム工学専攻博士課程前期在学。生体信号解析、次元減衰などの研究に従事。IEEE、電気学会、電子情報通信学会会員。

辻 敏 夫

1985年広島大学大学院工学研究科情報科学専攻修了。同年広島大学工学部助手、同助教授を経て、2002年より同大学工学部情報科学科教授、現在に至る。工学博士。日本学術振興会特別研究員（DC1）。現在、同特別研究員（PD）、博士（工学）、生体信号解析、ニューラルネットワーク、ニューマシンクフェースなどの研究に従事。IEEE、電気学会、電子情報通信学会会員。

高 木 健

2006年東京工業大学大学院総合理工学研究科マテリアル工学科博士後期課程修了（博士（工学）、同大学院研究科情報システム工学専攻博士後期課程特別研究員、同大学院助手、現在に至る。Best Technical Exhibition Award (Proc. of the 2004 IEEE IECON)、日本ロボット学会第 20 回講演会賞（2005）、BSN 社部会記念賞（2007）、日本機械学会ロボット工学会賞（2008）、ロボット学会学術賞（2009）など受賞。ロボットハンド、義手、機械設計などの研究に従事。IEEE、日本ロボット学会、日本機械学会、日本コンピュータ外科学会、IFITOMM の会員。]
大塚 暉

1972年高知リハビリテーション学院卒業。2002年広島大学大学院工学研究科博士課程後期修了。博士（工学）。德島大学医学部附属病院、愛媛大学医学部附属病院などを経て、95年広島県立保健福祉短期大学教授。2000年広島県立保健福祉大学教授。現在（県立広島大学教授）に至る。日本義肢装具学会上席客員理事、日本義肢装具学会下席客員理事、日本義肢装具学会会員、日本理学療法士会員などの会員。

陳 隆 明

1986年德島大学医学部卒業。神戸大学整形外科医学講座入試、87-91年神戸大学医学部医学部医学専門学生、90-92年マックギル大学（カナダ）留学、客員研究員。92年から兵庫県立総合リハビリテーションセンター整形外科医長兼リハビリテーション科医長を経て2006年より部長。2007年から神戸大学大学院客員准教授。国際義肢装具学会（International Society for Prosthetics and Orthotics）日本支部会長、国際義肢装具学会（International Society for Prosthetics and Orthotics）フェロー、日本義肢装具学会副会長、日本義肢装具学会理事、日本義肢装具学会評議員、日本リハビリテーション学会評議員、日本脊髄障害医学会評議員、日本整形外科学会専門医、日本リハビリテーション学会専門医・指導責任者。2001年飯田賞奨励賞（日本義肢装具学会）、2006年飯田賞本賞（日本義肢装具学会）。