3 D Artificial Active Antenna

Naoki Kanayama*, Makoto Kaneko* and Toshio Tsuji*

Artificial Active Antenna is a new family of sensing system that can detect the contact location between an insensitive flexible beam and an environment through the measurement of the rotational compliance of the beam in contact with the environment. This paper discusses the 3 D Active Antenna composed of an insensitive flexible beam, two actuators to move the beam in 3 D space, two position sensors to measure the actuator position, and a two-axis moment sensor to evaluate the contact force. The lateral slip, which is the inherent characteristic for 3 D Active Antenna, strongly depends on the pushing direction, the friction at the point of contact, and the normal surface of environment where the antenna makes contact. Generally, such a lateral slip overestimates the rotational compliance, deteriorates the sensing accuracy directly. In this paper, we discuss how to detect the lateral slip by using the sensors implemented and how to determine the next pushing direction for avoiding the lateral slip. We show that the two-axis moment sensor is effectively utilized for detecting the lateral slip. We propose a sensing algorithm which eventually lead to the pushing direction providing the exact contact distance. We also show a practical approach enabling us to detect the contact distance with permissible sensing accuracy, by at most three active motions.

Key Words: tactile based active sensing, 3 D active antenna, contact sensing, compliance

1. はじめに

昆虫の触覚は複眼構造になっていて、対象物の有無を判定できる程度で、対象物の距離情報や詳細な形を認識するのに適さない。一方、このような視覚能力を補うかのように、昆虫は3本の発達した触角を有していて、この触角を使って、特に近くの対象物に対して、反射的回避行動を実現しているように思われる。

昆虫の触角に似たセンサは、これまでにもいくつか提案されている。たとえば、Wang and Will*や Russell**の推奨のように瓤性を有するセンサが対象物に当接した際に生じるワイヤの変形を、根元部分のON-OFF接点スイッチで検出するという理解で簡単な機構の触覚センサを考案している。その後、広瀬らはワイヤに形状記憶合金を使ったウィスカセンサを歩行ロボットの足部に取り付け、障害物や路面の近接接覚センサとして利用している。同様なセンサは、Scie*によっても報告されている。BrooksはBehavior-Based Robotの一連の研究の中で、6足歩行ロボットの先端部に昆虫の触角に似たセンサを取り付け、障害物検出用として利用している。これらの研究で対象にしているセンサは、いずれもセンサと環境との接触の有無をON-OFF情報をとしてとらえているもので、対象物とワイヤとの接触情報は得られないものの、接触点位置はわからないうち、

これに対し、Russellはアレイ状のウィスカセンサシステムを開発し、ワイヤの先端を熱でえらず対象物と接触するという仮定のもとで、対象物形状を再構築することを成功している。

これに対して金子らは、センサユニットをもたない弹性ワイヤに相互自動のアクチュエータと1つの位置センサ、1軸のトルクセンサを付加した2D能動角角によって、触角と2次元物体との接触点までの距離が、触角の回転コンプライアンスに比例することを導いた。
方、上野らは接触点の位置に応じてフレキシブルワイヤの固有振動数が変化することに着目して、根元に配置されたトルクセンサのみの信号から接触点を見つける方法について提案している。これらの研究ではワイヤの柔らかなアクチュエータによる能動動作が接触点の位置の検出に必要不可欠であることが示されている。能動触角は対象物に直接接触させてセンシングを行うもので、視覚、超音波などの非接触センサとは異なる特徴として、対象物の位置だけでなく柔らかさの情報が得られる可能性がある。能動触角を用いた柔らかさのセンシングについては、現在の研究で、また、実際に対象物に接触する部分が弾性ワイヤであることから、センサの損傷に対してあまり問題になる必要がないことも、さらなる触覚センサと比べて、その有効性が高まる可能性がある。能動触角では機械的動作が必要で、センサに必要な空間がどう見ても小さくなってしまうが、対象物の位置情報だけではなく接触しないとい得られない情報（たとえば、対象物のコンプライアンス）も同時に得られる可能性を秘めている。また能動触角は機械が非常に単純なので、移動ロボットの外部環境認識センサとして有効である。ただし、2D能動触角では触角の運動は平面内に限られている。

本論文では、3D能動触角を用いた接触点検出原理について考察することを目的としている。2D能動触角では触角の運動が同一平面内に限定されていたが、3D能動触角ではその拘束条件を取り払う。したがって、3D能動触角の場合、触角の長手方向だけでなく、長手方向以外の方向にも滑ることの可能性があるため、2D能動触角とは異なったセンシング戦略を用いる必要がある。本論文では、押込み方向と2軸のモーメントセンサ出力から、押込み方向を逐次更新し、抵抗的に長手方向以外の滑りが発生しないような押込み方向（法線方向）および接触位置を見つけるセンシングアルゴリズムを提案する。さらに、たとえば3回の押込み動作で接触位置が、法線方向に押込み動作を行った場合に対して1%以内の検出精度でセンシングできることを示す。

2. 仮定と定義

本研究で、本質を見失わない程度で問題を簡単化するため、以下の仮定を設ける。

【仮定1】触角の変形は線形近似が成り立つ程度の微小とする。

【仮定2】触角の曲げモーメントによるたわみに対し、触角の長手方向の伸びや縮みは無視できるほど小さいものとする。

【仮定3】触角は同様な材質からなり、その形状は丸棒とする。

【仮定4】対象物は凸形状とし、また触角に比べて十分硬いものとする。

【仮定5】接触点での対象物の曲率は、その影響が無視できる程度に大きいものとする。

【仮定6】触角のダイナミクスを考えない。

【仮定7】対象物との摩擦係数は、接触点近傍で均一である。

【仮定8】押込み動作の前後で接触点までの距離の変化は、接触点までの距離に比べて十分小さいものとする。

【仮定9】によりたわみ線方程式の妥当性が保証される。また仮定3により、触角の長手方向に直交する断面内の力と変位的方向が一致することが保証される。これらはいずれも、センシングアルゴリズムを構築するうえでの重要な性質を提供する。

以下に、本研究で頻繁に使用する用語を定義しておく。

センサ平面：2軸のモーメントセンサで測定可能なモーメントベクトルが張る平面。

縦滑り：触角の長手方向への滑り。

横滑り：触角の長手方向に対して直交する方向への滑り。

摩擦力：押込みによって生じた触角に、対象物に力を及ぼす。対象物は垂直抵抗と摩擦力の合力を反力として触角に及ぼす。仮定2において触角のもののが晴れできるほど小さいとしているので、押込みによって生じる触角のたわみ分、接触点で滑りが発生することになる。押込みによってたわみ分は増えていくので、押込みを行程する間、縦滑りは常に発生するとした。したがって接触点に作用している摩擦力は摩擦力として取り扱う必要がある。動摩擦力は必ず動摩擦係数に現れ、その方向は滑り方向と反対側である。

3. 3D能動触角の構造

金子らが提案した2D能動触角システムでは、触角

Fig. 1 Comparison between 2D and 3D Active Antennae
の運動を平面内に限定しているので、Fig.1(a)のように「対象物は触角が運動する平面に直交するように置かれていて、触角の横滑り以外の滑りは発生しない」という暗黙の仮定を置いていた。3D能動触角センサではFig.1(b)のように横滑りが発生するので、少なくとも横滑りが発生したかどうかを判定できること、および3次元空間をセンサング可能であることが最低条件である。

任意形状の3次元対象物にセンサングを行うためには、アクチュエータは少なくとも2つ必要である。また、各アクチュエータの回転角度を測るセンサがそれぞれのアクチュエータについて必要であることはいうまでもない。

以上の点を踏まえて、本研究ではFig.2に示される3D能動触角を考える。Σs, Σtはそれぞれ基準座標系とセンサ座標系を表す。2つのアクチュエータにより触角を空間内の任意の方向に位置決めることができ、その回転軸の交点上にはx轴、z軸回りのモーメントが測れる2軸のモーメントセンサが設置されている。

同一のセンサ中心をもつ2軸のモーメントセンサを使用した場合、センサが測っているモーメントはFig.3のように、

\[m_x = \nu_0 \sin \phi \] \hspace{1cm} (1)
\[m_z = -\nu_0 \cos \phi \] \hspace{1cm} (2)

である。ただし、\(\nu_0 \)は触角にかかる反力Fをセンサ平面に射影した成分、\(\nu_0 \)はモーメントアームの長さである。これらの式の比をとれば、

\[\tan \phi = -\frac{m_x}{m_z} \] \hspace{1cm} (3)

となる。すなわち、同一のセンサ中心をもつ2軸のモーメントセンサを使用すれば、センサ平面に射影した力のセンサ平面での角度 \(\phi \)が測ることに注意されたい。

Fig.4に示した3D能動触角の観察を示す。触角はステンレス製ピーム(\(\phi = 1.0 \text{mm} \))で、アクチュエータとしてはハーモニック・ドライプ・システムズ製 RH-5AおよびRH-14を用いている。また2軸モーメントセンサとしては、Emplus社製の3軸モーメントセンサの2軸分を使用している。

4. 横滑りが発生しないための条件

対象物が未知の3次元形状の場合、あらかじめ対象物の法線方向を知ることができないため、Fig.1(b)のように法線方向以外の方向に押し込み動作を実行する可能性がある。触角の長手方向ベクトルを \(\eta \)、接触点における対象物の法線ベクトルを \(n \)、各軸周りの回転角度を \(\omega_1 \), \(\omega_2 \)とすれば、押し込みによって横滑りが発生しない条件は、

\[n \cdot (\omega_1 + \omega_2) \times \eta = \| (\omega_1 + \omega_2) \times \eta \| \] \hspace{1cm} (4)

で与えられる。すなわち、触角の速度ベクトルが対象物の法線ベクトルと平行であることが横滑りが起こらないための条件となる。
5. 横滑りが起こらない場合

センサ座標系 \(\Sigma_m \) における接触点の位置ベクトルを \(\vec{r}^e = (0, y_0, 0)^T \) とする。その状態からアクチュエータをそれぞれ \(\Delta \phi_1, \Delta \phi_2 \) 微小回転させる。対象物がなければ、位置ベクトル \(\vec{r}^e \) の点は、

\[
\begin{align*}
\vec{r}^{e'} &= \Delta \vec{R}^{e'} \\
\end{align*}
\]

に移動する。ただし、\(\Delta R \) は以下の式で表される回転行列である。

\[
\Delta \vec{R} = \begin{bmatrix}
\cos \Delta \phi_1 & -\sin \Delta \phi_1 & 0 \\
\cos \Delta \phi_2 & \sin \Delta \phi_2 & 0 \\
\sin \Delta \phi_2 & \cos \Delta \phi_2 & 1
\end{bmatrix}
\]

（6）

また添字 \(s + d \) は、\(\Delta \phi_1, \Delta \phi_2 \) 回転後のセンサ座標系での値であることを表わしている。実際には、触角は対象物によって \(\vec{r}^e \) に拘束されるため、触角にはたわみが発生する。そのたわみによって触角は対象物からモーメントを受ける。モーメント \(\Delta m^{s+d} \) は仮想変位ベクトル \(\Delta \vec{r}^{s+d} \) と反力ベクトル \(\Delta f^{s+d} = (\Delta f_1^{s+d}, \Delta f_2^{s+d}, \Delta f_3^{s+d})^T \) より

\[
\Delta m^{s+d} = \Delta \vec{R}^{s+d} \times \Delta \vec{f}^{s+d}
\]

である。\(\Delta \phi_1 \) と \(\Delta \phi_2 \) が微小だとすれば、

\[
\begin{align*}
\Delta m^{s+d} &= \begin{bmatrix}
\Delta m_1^{s+d} \\
\Delta m_2^{s+d}
\end{bmatrix} \\
\Delta \vec{f}^{s+d} &= \begin{bmatrix}
\Delta f_1^{s+d} \\
\Delta f_2^{s+d}
\end{bmatrix}
\end{align*}
\]

（7）

と近似できる。ただし \(\Delta f_3^{s+d} = -\Delta \phi_1 \Delta f_2^{s+d} + \Delta \phi_2 \Delta f_1^{s+d} \) であり、\(\Delta \phi_i \) という微小係数を含んでいる分、他の 2 つの成分に比べて極端に小さくなる。また、仮想変位ベクトルと反力ベクトルの関係は、コンプライアンス行列 \(\mathbf{C} = \text{diag} [c_1, c_2, c_3] \) を用いて

\[
\Delta \vec{f}^{s+d} = \mathbf{C} \Delta \vec{r}^{s+d}
\]

（8）

と表わせる。ただし \(c \) は微小量を意味している。触角の変形では、接長方向が引張りになるのに対し、横方向は曲げになるので、コンプライアンス行列の各成分 \(c_i \) は \(x_1, x_2 \) 分成 \(c_i \) に比べて非常に小さい。一方、\(\Delta \phi_1 \) と \(\Delta \phi_2 \) が共に微小であることを考慮して、（9）式からモーメントセンサが対応する荷重成分のみを取り出すと

\[
\begin{align*}
\Delta \phi_1 y_0 &\approx \frac{\Delta m_1^{s+d}}{y_0} \\
\Delta \phi_2 y_0 &\approx \frac{\Delta m_2^{s+d}}{y_0}
\end{align*}
\]

（10）

と、近似できる。触角の変形が観察の曲げによってもたらされることが考えると、次式を得る。

\[
\begin{align*}
y_0 &\approx 3EI \frac{\Delta \phi_1}{\Delta m_1^{s+d}} \\
y_0 &\approx 3EI \frac{\Delta \phi_2}{\Delta m_2^{s+d}}
\end{align*}
\]

（11）

ただし、\(\Delta m_1^{s+d}, \Delta m_2^{s+d} \) は Fig. 3 の 2 個のモーメントセンサで得ることができる。センサデータを変換によって接触点に横向方向滑りが発生しなければ、この（12）式を用いて触角の押し込み角度とトルクセンサの出力から接触点までの距離がわかる。この場合、どちらの式を用いてもよいが、一方だけの式に頼ると、センサができない方向（特異方向）が現れてしまう。そこで、（11）式から（12）式のように変形する。

\[
y_0 \approx 3EI \frac{\sqrt{\Delta (\phi_1^2 + \phi_2^2)}}{\sqrt{(\Delta m_1^{s+d})^2 + (\Delta m_2^{s+d})^2}}
\]

（12）

（12）式は、角度センサとモーメントセンサから得られる值をベクトルの成分としたときのベクトルのノルムをつくった関係式になる。ここで、

\[
\begin{align*}
\vec{r}^{s+d} &= \sqrt{\Delta (\phi_1^2 + \phi_2^2)} \\
y_0 &= \sqrt{(\Delta m_1^{s+d})^2 + (\Delta m_2^{s+d})^2}
\end{align*}
\]

とおき、2 軸のモーメントセンサで測定できるモーメントを \(\Delta m = [\Delta m_1^{s+d}, \Delta m_2^{s+d}]^T \) と定義すると、回転コンプライアンス \(c \) は（12）式において、回転角度とその変化によって得られるモーメントの比から、（13）式のように表すことができる。

\[
c = \frac{\sqrt{\Delta (\phi_1^2 + \phi_2^2)}}{\sqrt{(\Delta m_1^{s+d})^2 + (\Delta m_2^{s+d})^2}} = \frac{\Delta \phi}{\Delta m}
\]

（13）

よって接触距離 \(y_0 \) は以下のようになる。

\[
y_0 \approx 3EIc
\]

（14）式は、接触距離が触角の回転コンプライアンスに比例することを示すもので、2 D 能動触角の基礎式にまつたく同じになる。

6. 横滑りが起こる場合

接触点に横滑りが発生したときのコンプライアンスは、横滑りなしの場合と異なるため、横滑りの発生は接触点位置をセンサするうえでの誤差要因となる。したがって、本研究では横滑りの発生が確認された場合、複数回の押し込み動作を通じて最終的に横滑りが発生しない押し込み方向を見つけるというセンサング戦略をとる。いったん横滑りの発生しない方向を見つけてしまえば、接触位置の検出原理は 5 章の方法に帰着する。

6.1 横滑りの判定

センサングによって横滑りが発生した場合を Fig. 5 に示す。Fig. 6 は、Fig. 5 をセンサ平面上に射影した図である。以下の議論は、位置ベクトルおよび反力ベクトルをセンサ平面上に射影して考え、対象物がなければ初期接触点はアクチュエータによって仮想変位点まで移される。この初期接触点と仮想変位点を結ぶベクトルを仮想変位ベクトル \(\Delta \vec{v} \) とする。さらに \(\Delta \vec{v} \) のセンサ平面上における角度を押し込み方向 \(\varphi = \angle (\Delta \vec{v}) \) とすると、横滑りによって接触点は移動するので、触角の実質変位ベクトル
Fig. 5 Definition of notations in case that the antenna makes a lateral slip

Fig. 6 Several parameters projected on the sensing plane II

\[\phi = g_0(\varphi) \quad (15) \]

とある。押込み方向を入力、反力の方向を出力とする関数で表現することができる（詳細については付録参照）。

(15)式に \(\delta = \varphi - \varphi \) を代入すれば、

\[\delta = \varphi - g_0(\varphi) \quad (16) \]

となる。横滑りが起こっていなければ \(\delta = \pi \) になるので、

\[\delta = \varphi - g_0(\varphi) = \pi \quad (17) \]

を満たす押込み方向 \(\varphi = \nu^* \) を求めることが、横滑りを起こさないセンシング方向を見つけることに対応する。

具体的に説明するため、たとえば Fig. 7(a)のように、外向き法線方向 \(\nu^* = \pi/2(\text{rad}) \)、摩擦角 \(\alpha = \pi/18(\text{rad}) \) の対象物に対してセンシングを行う場合を想定してみる。この場合の押込み方向 \(\varphi \) と反力ベクトルの方向 \(\phi \) の関係を示したグラフが Fig. 7(b)である。実録は数値解法で求めた理論値。\(\varphi \) は実驗値である。押込み方向が内向き法線方向 \(\varphi = \nu^* = \pi/2 \) ときに \(\phi = \varphi = \pi/2 \) となり、横滑りが発生しないことがわかるが、それ以外の方向では \(\phi \neq \pi/2 \) となり、横滑りの発生を示唆している。実験値ではノイズの影響で多少の変動があるものの、反力が常に摩擦円錐上に現れることから、\(\phi \) は \(\nu^* \pm \alpha \) の範囲内に入っている点に注意されたい。同様に、押込み方向 \(\varphi \) と \(\delta \) の関係を示した Fig. 7(c)において、\(\varphi = \nu^* = 3\pi/2 \) のときに \(\delta = \pi \) となり、横滑りが発生しないことを示しているが、それ以外の方向では \(\delta \neq \pi \) であることから、横滑りが発生していることがこのグラフからも読み取れる。ただし、押込み方向 \(\varphi \) が摩擦角の内部 \((-\pi/18 < \varphi - \nu^* < \pi/18) \) にあるときは \(\delta \) はきわめて \(\pi \) に近い点に留められる。6.3節で説明する実用的方法は、この特徴をうまく利用するものである。

反力の方向が必ず法線方向から \(\pm \alpha \) の範囲内に現れること、および \(\phi = g_0(\varphi) \) と \(\delta = \varphi - g_0(\varphi) \) が単調増加であるという性質（詳細は付録参照）を用いて、2分法の考
1 回目: 任意の方向 \(\phi^{(1)} \) に押込みを行う。
このとき得られる反力の方向を \(\phi^{(2)} \) とする。\(\delta^{(1)} = \phi^{(1)} - \phi^{(2)} \) として、2 回目の押込み方向 \(\phi^{(2)} \) を

\[
\phi^{(2)} = \phi^{(1)} - \text{sign} (\delta^{(1)} - \pi) \frac{\pi}{2}
\]

と定める。\(\phi^{(2)} \) を(18)式で決めるれば、1 回目と 2 回目の滑り方向は必ず逆になり、\(\phi^{(2)} \) と \(\phi^{(3)} \) は外向き法線ベクトル \(\mathbf{n} \) の両側に分かれる。(15)式の単調性より、1 回目と 2 回目の横滑り方向を変えたければ、\(\phi^{(2)} \) と \(\phi^{(3)} \) が内向き法線方向 \(\mathbf{n} \) を挟んだ両側に分かれるようにすればよい。したがって、1 回目の押込み方向に \(\pi/2 \) を加える（または引く）ことで、容易にそのような方向が求まる。

2 回目: \(\phi^{(3)} \) の方向に押込みを行う。

1 回目と同様にこのとき得られる反力の方向を \(\phi^{(4)} \) とする。(18)式で方向を決めるれば、2 回目の横滑り方向は必ず 1 回目とは逆になり、\(\phi^{(4)} \), \(\phi^{(5)} \) ともに、対象物の法線方向 \(\mathbf{n} \) からのずれは、最大 \(\alpha \) である。したがって、\(\nu^* - \alpha < \phi^{(4)} - \alpha < \frac{\nu^* + \alpha}{2} \) となり立つ。

3 回目: \(\phi^{(5)} = (\phi^{(4)} + \phi^{(3)})/2 + \pi \) の方向に押込みを行う。

横滑りは反力がより法線方向に近づく向きに起こるので、\(|\phi^{(5)} - \nu^*| > |\phi^{(3)} - \nu^*| \) の関係が成り立つ。(18)式より、押込み方向 \(\phi^{(5)} \) は対象物の内向き法線方向 \(\mathbf{n} \) から最大でも \(\alpha/2 \) しかずれていないので、反力の方向 \(\phi^{(6)} \) は外向き法線方向 \(\mathbf{n} \) から最大でも \(\alpha/2 \) しかずれていない。

1 回目と 2 回目の押込みのうち横滑り方向が 3 回目の反力の方向と反対のものと、3 回目の反力の方向を用いて

\[
\phi^{(6)} = (\phi^{(5)} + \phi^{(3)})/2 + \pi
\]

として、4 回目の押込み方向を決める。\(\phi^{(12)} \) において \((a,b) \) は、\((a,b) = \{ x \mid \min (|\delta^{(5)} - \pi|, x = a, b) \} \) で定義される関数とする。この関数を導入することにより、4 回目と 3 回目の押込みで横滑りが小さいほうを選択することが可能となる。

4 回目: このとき得られる反力の方向 \(\phi^{(7)} \) の法線方向からのずれは、(21)式を満たすことが容易に証明できる。

\[
|\phi^{(7)} - \nu^*| < \frac{\alpha}{2^n}, \quad n \geq 4
\]

したがって、無限回のセンシングを行えば反力方向と法線方向のずれは 0 になる。のとき、\(\delta^{(1)} = \pi \), \(\phi^{(7)} = \nu^* \), \(\phi^{(7)} = \nu^* \) なので、対象物の法線方向がわかることになる。
このように対象物の法線方向を求めたうえで最後にその方向に押込み動作を実行すれば，5 章の (12) 式を用いて対象物までの距離を求めることができる。

Fig. 8 は，このアルゴリズムを用いて実際の対象物に対するセンシングを行った実験結果である。実験は，Fig. 7 と同じ条件で行った。Fig. 8(a) は，3 回目の押込みによる仮想変位ベクトルと反力ベクトルを示している。1 回目，2 回目にと対象物の法線方向から大きく離れた方向に押込みを行っているが，反力はそれよりも小さな範囲に現れている。Fig. 8(b) は，各押込みによって得られる δ の値をプロットしたグラフ，Fig. 8(c) はそのときに得られるコンプライアンス c と，法線方向に押しこんだ場合のコンプライアンス c₀ の比をとったグラフである。（b）より，3 回目以降の押込みでは δ が π に近くなり，横滑りがほとんど起こっていないことがわかる。また押込み回数が増えるにしたがって，（c）に示すとおりコンプライアンスの比は，1 に収束していることがわかる。

6.3 考 察

6.2 節の方法を使えば 3 次元対象物の接触点が検出可能であるが，無限回のセンシング動作を行うのは現実的ではない。また Fig. 7(c) より，押し込み方向が法線方向に十分近ければ横滑りの影響も小さいと考えられるので，本節では押し込み方向 φ が摩擦角内部にあるとき，δ がきわめて π に近いことに着目して，どのくらいのセンシング回数で接触点が精度よく検出できるかといった点について考察する。

接触点距離に比例するコンプライアンスは (13) 式によって求められるが，横滑りが発生すれば仮想変位ベクトルと実際変位ベクトルは一致せず，\(\lvert \Delta r_{\text{real}} \rvert > \lvert \Delta r_{\text{real}} \rvert \)となる。押し込みによって得られるモーメントは摩擦角の実際変位ベクトル Δr₉₀ の大きさに比例するので，横滑りが発生した場合 (13) 式の分母が小さくなり，コンプライアンスおよび距離関数が発生しない場合に比べて大きな値となる。つまり，見かけ上摩擦角は横滑りがない場合のそれよりも，柔らく感じてしまう。

Fig. 9 は，対象物の法線方向にセンシングしたときのコンプライアンス c₀ と，押し込み方向を変えた場合に現れる見かけコンプライアンス c との比をとったグラフである。ただし，破線および実線は理論値。○は \(\delta = \pi / 18 \) の場合の実験値である。法線方向近傍である \(\varphi - \varphi' = 0 \) の近くでは，コンプライアンスの比が 1 に近いが，押し込み方向が摩擦角の範囲を超えると，c₀/c は急激に大きくとなっている。このグラフから，法線方向に近い範囲でセンシングを行えば，そのときに得られる見かけコンプライアンスの誤差は，十分小範囲に収まることが予想される。

Fig. 9 Compliance ratio between c/c₀ (\(\Delta \delta = \pi / 3 \text{rad} \))
でき、
6.2節のアルゴリズムでは、3回目の押し込み方向の内向き法線方向とそのずれはa/2以下であった。押し込み方向がa/2に近づくと、押し込み量がπ/18[rad]以下の場合、摩擦係数がどのような値であっても誤差は1%以下に抑えられる。Fig.8(c)に示した実験結果でも、3回目以降の押し込み量はc/c0≈1となっており、実用的には3回の押し込み動作で距離のセンシングには十分であることがわかる。

Fig.10は、直方体の対象物に対してセンシングを行った結果である。左側のO印が回転軸、右側の直方体が対象物の形状である。角が最初に接触した点の角度と距離を基準として、3次元グラフとしてプロットしてある。

モーメントセンサのノイズによる誤差があるものの、対象物の3次元形状を再現できている。

Fig.10の形状検出実験において、1点あたりのセンシングに必要な時間は5秒であった。押し込み動作の速度は、理論的には接触角の動特性が無視できる範囲で任意に設定できるが、実験の装置で実験を行う場合には、センサの特性を考慮する必要がある。今回作成した実験装置では、モーメントセンサ出力のノイズおよび応答性の関係から、センシング動作の速度を決定した。

7. 結 言

本研究では、3次元対象物に対する位置のセンシングシステムとして3D能動触角システムを提案した。3次元対象物に対してセンシングを行う場合に発生する横滑りの現象を理論的に明らかにしたうえで、無限回のセンシングを行えば対象物までの接触点距離を求めることが示した。さらに横滑りによる誤差を考慮すれば、実用的には3回の押し込み動作で、十分接触点距離が求まるべきことを示した。

最後に、実験に使用した能動触角は(株)ハーモニック・ドライブ・システムズにおいて試作していただいたものである。千葉次郎教授をはじめとして、設計試作に直接的に関与していただいたイワン・ゴドレール氏に心より感謝の意を表します。

参考文献
2) R. A. Russell: Closing the Sensor-computer-robot Control Loop, Rophotics Age, April, 15/20 (1984)
5) R. A. Brooks: A Robot that Walks; Emergent Behaviors from a Carefully Evolved Network, Neural Computation, 1, 253/263 (1989)
7) 金子, 上野: 能動触角 (Active Antenna) に関する基礎的研究, 日本ロボット学会誌, 13-1, 149/156 (1995)
8) 上野, 金子: Dynamic Active Antenna (動的能動触角) に関する基礎的研究, 日本ロボット学会誌, 12-8, 137/143 (1994)
9) 金山, 金子, 辻: 3D能動触角 (Active Antenna) に関する研究, 第12回日本ロボット学会学術講演会, 657/658 (1994)

（A 横滑りメカニズムの解析）

横滑りが起こっている場合の挙動について、詳しく調べてみる。触角が対象物に接触した状態から微小角度dθだけ押し込みを行った場合、接触点における力をFig.5のように描く。また、Fig.5をセンサ平面に射影するとFig.6のようになる。押し込みによると、発生した横滑り量をs_n, 横滑り量をs_mとする。対象物の表面と押し込み方向の間の角度をλ=φ−(π/2), 法線方向とセンサ平面に射影した反力の間に角度をβ=φ−α, または動摩擦円形内での反力の方向をγとする。ただし、γは変形前の触角の長手方向を基準としている。

幾何学的関係より横滑り量は、

\[s_m = |\Delta r_n - \Delta r_s| \]

\[= y_c \sin \phi \sin \Delta \theta (\cos \lambda - \sin \lambda \tan \beta) \]

(22)

あるいは、この式を押し込み量\(\Delta \theta \)で微分すると横滑り量の変化率が求まる。

Fig.6において、実質変位ベクトル\(\Delta r_n^{\text{p}} \)の大きさが、触角の真のたわみ量なので幾何学的関係から求めると

\[|\Delta r_n| = y_c \sin \phi \sin \lambda \cos \beta \]

(23)

である。横滑り量はたわみ線形式を長さ方向に積分して求めることができる。
$$s_{ss} = g_0(\delta R_{ss})$$
(24)

という実質的な関数による。対象物から見ると接点の接触点は、幾何学的関数の滑り量変化がなす角γの方向に滑っていることになる（Fig. 5参照）。したがって

$$\gamma = \tan^{-1}\left(\frac{d}{d\delta s_{ss}} \tan\frac{d}{d\delta s_{ss}}\right)$$
(25)

である。ここで得られるγをセンサ平面に射影した角度がβである。

$$\tan \beta = \tan \alpha \sin \gamma$$
(26)

これら4つの(22), (24), (25), (26)式からγを消去すれば、押込みによって発生する反力の関係式が得られる。

ここで、簡単化のためいくつかの近似と置換を行おう。押込み量Dθは微小なので、sinDθ ≈ Dθとする。縫滑り量の押込み変化は

$$\frac{d}{d\delta s_{ss}} \approx k \theta \sin \lambda \cos \beta$$
(27)

として、実質的な関数に比例する関数に置く。ただし、kは接触点の材料および形状によって決まる正の比例定数である。（27）式の値は、常に厳密解より大きくなり、縫滑りの影響を大きく観測することになるが、その場合

(25), (26)式よりγ, βともに小さくなり、結果として縫滑りの影響が大きくなくなる。本論文では、縫滑りが接触点距離のセンシングに与える影響を考慮するの（27）式の置換により誤差を大きくしめ評価しても、誤差の上限を評価するものとして有効である。

最終的に、押込みによって発生する反力の関係式は,

$$g_0(\beta, \lambda, D\theta, a) = 0$$
(28)

と表わされる。（28）式をβについて解けば、接触点における滑りの状態がある、β, λの定義より、法線方向ν*, 摩擦角aの対象物に対して、押込み方向ν, 押込み量Dθのセンシングを行ったときに現れる反力の方向φが得られる。

$$\phi = g_0(\phi, D\theta, \nu^*), a$$
(29)

また、押込み方向と反力の間の角度γ=φ-ψを用いて

$$\delta = \phi - g_0(\phi, D\theta, \nu^*), a$$
(30)

と表わすこともできる。ただし、(29), (30)式は三角関数を含んだ関数の形になるので、解析的に解を求めることは難しい。

対象物を定めればν*, aが決まり、さらに押込み量を一定にすればDθ=const. となり、(29), (30)式は押込み方向φだけの関数になる。ここで、(29), (30)式が単調な関数であれば、φおよびδはφについて1対1対応なので、φ=ν*, δ=πを満たすφはただ1つ存在する。それぞれの式をφで微分して、φ=ν*のときの微係数を調べると

$$\min \left\{ \frac{d\phi}{d\phi} \right\} = \frac{d\phi}{d\phi} = \frac{\tan \alpha}{\tan \alpha + k \theta} > 0$$
(31)

$$\min \left\{ \frac{d\phi}{d\phi} \right\} = \frac{d\phi}{d\phi} = \frac{k \theta}{\tan \alpha + k \theta} > 0$$
(32)

である。したがって、(29), (30)式はφに対して単調増加である。

[著者紹介]

金山 尚樹

1994年九州工業大学情報工学専攻システム工学科卒業。同年広島大学大学院工学研究科（博士課程前期）情報工学専攻入学。現在に至る。メカトロニクス、アクティブセンシングの研究に従事。

金 子 真（正会員）

（Vol. 31, No. 8 参照）

辻 敏夫（正会員）

（Vol. 31, No. 8 参照）