研究速報

エントロピーマックス規範によるポルツマンマシンの解析

非会員 奥原 浩之† 正 員 辻 敏夫††
正 員 尾崎 俊治††

An Analysis of Boltzmann Machines by the Maximum Entropy Criterion
Koji OKUHARA†, Koemonji, Toshio TSUJI††
and Shunji OSAKI††, Members

† 広島大学工学部工学科、広島市
†† 広島大学理学部第二学科（電気系）、広島市
Faculty of Engineering, Hiroshima University, Higashi-Hiroshima-shi,
724 Japan

あらまし 本研究では、ポルツマンマシンの定常状態に深い解釈を与えるため、まず、ポルツマンマシンの定常状態の確率分布 (ポルツマン分布) が、ユニット間の相関が一定のもとでエントロピーを最大にするような確率分布 (定常分布) であると考える。そして、ネットワークの結合荷重と温度がラグランジェ乗数を与えることを示す。更に、ネットワークの定常状態を示す解であると解釈が、ネットワークの相関が与えられれば保存量が定義できることを示す。

キーワード ポルツマンマシン、定常状態、エントロピー、相関

1. まえがき

人間の思考を模倣して考えることは、あまりにも単純すぎるポルツマンマシンではあるが、その振舞いの示唆は、人間の思考の振舞いの理解にとって少なからず意味があると思われる。ポルツマンマシンは、Ackley, Hinton and Senjnowski(11)による学習のアルゴリズムを用いることにより、外界から与えられた確率分布に対応した望ましい出力確率分布を獲得することが可能である。もっとも、その学習のアルゴリズムの導入には統計物理などの分野との関係がある。アナロジーが存在する。ここでは別の観点からポルツマンマシンの挙動解析することを目的した。今まで見過ごされていった新たな解釈が出てくるのではなかろうかと考えると、その足摺りとなるのが、ポルツマンマシンとエントロピーの関係である。

本論文では非線形処理をする n 個のユニットが相互に対応した重みで結合し、それぞれのユニットがある確率で 0 または 1 を非同期に出力するようなポルツマンマシンについて考察する。ポルツマンマシンの定常状態の確率分布が、ユニット間の相関が一定のもとでエントロピーを最大化するような確率分布であると考える。ネットワークの結合荷重と温度がラグランジェ乗数を与えることが示される。更に、相関とラグランジェ乗数の関係式があり、相関が与えられると保存量が定義できることを示す。

2. ポルツマンマシンの定義化

各ユニットの状態を \(x_i \), \(i=1,2,\ldots,n \) とすると \(i \) 番目のユニットへの入力 \(X_i \) は、

\[
X_i = \sum_{j=1}^{n} w_{ij} x_j - \theta_i
\]

(1)

で与えられる。ここで、\(w_{ij} \) は \(i \) 番目のユニットから \(j \) 番目のユニットへの結合荷重、\(\theta_i \) は \(i \) 番目のユニットのしきい値である。ネットワークの結合荷重は対称としているので、

\[
w_{ii} = 0
\]

(2)

である。そして、入力が \(X_i \) のとき出力 \(x_i \) がそれぞれ 1 および 0 となる確率を \(P(x_i = 1; X_i) \) および \(P(x_i = 0; X_i) \) で表すと、各ユニットは次の確率

\[
P(x_i = 1; X_i) = f\left(\frac{X_i}{T} \right)
\]

(3)

\[
P(x_i = 0; X_i) = 1 - P(x_i = 1; X_i) = f\left(-\frac{X_i}{T} \right)
\]

(4)

で 1 または 0 のうちどちらかを出力する。ここで、\(f(x) \) は非線形関数で通常、次のシグモイド関数

\[
f(x) = \frac{1}{1 + \exp(-x)}
\]

(5)

が用いられる。ネットワークのパターンが \(\alpha \) である状態を \(\alpha^s = (x_1^s, x_2^s, \ldots, x_n^s) \) で表す。このとき、ネットワークのエネルギー関数 \(E(\alpha^s) \) は次のように、

\[
E(\alpha^s) = -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} x_i^s x_j^s + \sum_{i=1}^{n} \theta_i x_i^s
\]

(6)

と定義できる。ここで、\(x_i^s \) はパターン \(\alpha \) の \(i \) 番目のニューロンの出力状態である。式 (6) において改めて \(w_{ii} = \theta_i = 0 \) とおくと、

\[
E(\alpha^s) = -\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} x_i^s x_j^s
\]

(7)

を得る。これはユニットの出力状態 \(x_i^s \) が 1 または 0 の 2 個であり、\(x_i^s = x_i \) でできるからである。

式 (3) または式 (4) に従って状態変化を繰り返すと、各状態がネットワークの結合荷重によって一意に決まる確率で出現するような定常状態に収束することがわかかる(9)。この確率分布はエネルギー関数を用いて、次のようなポルツマン分布

\[
P(\alpha^s) = Q \exp\left(\frac{-E(\alpha^s)}{T} \right)
\]

(8)

で表される。ここで、\(Q \) は規格化定数である。
3. エントロピー最大規範に基づくポルツマンマシンの解析

ポルツマンマシンのi番目とj番目のユニットの相関

\[C_{ij} = \sum_{x} x_i x_j P(x) x_i x_j \]

（9）

で与えられる。もちろん規格化の条件

\[\sum_{x} P(x) = 1 \]

（10）

が存在する。定常状態を考えるのであるから相関は定数である。ここで、エントロピーS

\[S = -\sum_{x} P(x) \log P(x) \]

（11）

を導入して、このエントロピーを最大にするような状態x^*が、確率P(x^*)で出現しているものと考えよう。

式(9)と式(10)の拘束下で式(11)を最大化するP(x^*)は、n(n+1)/2+1個のラグランジュ乗数λ_{ij} (i, j = 1, 2, 3, ..., n, i ≠ j, λを用いて求めることができる。まず、式(9)と式(10)からラグランジュ乗数を用いて式(11)を変形し、

\[J = S - (\lambda - 1) P(x^*) - \sum_{i=1}^{n} \lambda_i (C_{ii} - \sum_{j=1}^{n} x_i x_j) \]

（12）

を定義する。そして、JをP(x^*)に関して微分し得られる式を0とおけば、

\[-\sum_{i=1}^{n} \lambda_i x_i x_j P(x^*) = 0 \]

（13）

となる。これを解いて、

\[P(x^*) = \exp\left(-\sum_{i=1}^{n} \lambda_i x_i x_j \right) \]

（14）

を得る。更に、式(14)を規格化の条件、式(10)に代入すると、

\[\exp(-\lambda) \sum_{x} \exp\left(-\sum_{i=1}^{n} \lambda_i x_i x_j \right) = 1 \]

（15）

を得る。ここで、

\[\sum_{x} \exp\left(-\sum_{i=1}^{n} \lambda_i x_i x_j \right) = Z \]

（16）

とおく。これは分配関数の関数である、\n
\[\lambda = \ln Z \]

（17）

である。式(14)は、

\[P(x^*) = Z^{-1} \exp\left(-\sum_{i=1}^{n} \lambda_i x_i x_j \right) \]

（18）

となる。以上のよう、ラグランジュ乗数λ_{ij}を決定できる。まず、式(8)と式(18)より、

\[ZQ \exp\left(-\frac{E(x^*)}{T} \right) = \exp\left(-\sum_{i=1}^{n} \lambda_i x_i x_j \right) \]

（19）

となる。そこで両辺の対数をとると、

\[-\frac{E(x^*)}{T} = -\sum_{i=1}^{n} \lambda_i x_i x_j \]

（20）

を得る。従って、

\[\gamma = \frac{ZQ}{E(x^*)} \]

（21）

である。ここで、\gamma = 1 (Q = Z^{-1}) とし、エネルギ関数E(x^*)として式(7)を用い、式(19)に代入すると、

\[\frac{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} x_i x_j}{T} = -\sum_{i=1}^{n} \lambda_i x_i x_j \]

（22）

になる。よって、λ_{ij}が

\[\lambda_{ij} = -\frac{w_{ij}}{T} \]

（23）

で与えられることがわかる。式(23)は式(19)の十分条件となっている。

以上のよう、ユニット間の相関一定のもとでエントロピーを最大にするという観点からポルツマンマシンをとらえると、ネットワークの結合荷重w_{ij}および温度Tはラグランジュ乗数λ_{ij}に対応することが示された。例えば、学習時に行われる焼き直し(simulated annealing)は、制約に対するラグランジュ乗数を最初は小さくしておく、徐々に大きくすることに対応していることがわかる。

4. 保存量の導出

次に保存量を導く。まず、式(9)と式(10)の制約のもとで、エントロピーSを最大にするような確率分布は、

\[P(x^*) = \frac{1}{(2\pi)^{n/2}} |C|^{-1} \exp\left(-\sum_{i=1}^{n} \sum_{j=1}^{n} |C|^{ij} x_i x_j \right) \]

（24）

である。従し、Cは相関C_{ij}を要素とする相関行列、|C|は行列式、|C|^{ij}は行列|C|のi行j列の余因数を表す。式(24)は平均0、共分散行列Cの正規分布を与える。更に、このときのエントロピーの標準値は次のように|C|を用いて、

\[S = \ln \sqrt{(2\pi e)^n} |C| \]

（25）

となることがわかっている。そこで、式(8)と式(24)を比較すると、

166
\[
\left| C \right| = \begin{cases} \frac{-w_0}{T} & (i \neq j) \\ \frac{2w_u}{T} & (i = j) \end{cases} \tag{26}
\]

が成り立つことがわかる。式(23)と式(26)から、

\[
\lambda_\alpha = \begin{cases} \left| C \right| & (i \neq j) \\ -2 & (i = j) \end{cases} \tag{27}
\]

となる。

一方、式(14)を式(11)に代入すると、

\[
S = \sum_{i=1}^{N} x_i^2 + \sum_{i=1}^{N} P(x_i) \left(\sum_{i=1}^{N} x_i \right) \tag{28}
\]

となる。ここで、式(9)と式(10)を用いると、

\[
S = \sum_{i=1}^{N} x_i^2 + \sum_{i=1}^{N} \lambda_\alpha C_i \tag{29}
\]

と書ける。ボルツマンマシンの定常状態では式(27)より \(\lambda_\alpha \) の値は与えられるので、これと式(17)から、

\[
\ln(2\pi e)^n \left| C \right| \cdot \left| C \right| = \ln Z + \frac{1}{C} \sum_{i=1}^{N} \left(\sum_{j=1}^{N} \left| C \right| - 2 \sum_{j=1}^{N} \left| C \right| C_i \right) \tag{30}
\]

となる。これを整理して、

\[
\sum_{i=1}^{N} \left(\sum_{j=1}^{N} \left| C \right| - 2 \sum_{j=1}^{N} \left| C \right| C_i \right) = -\left| C \right| \ln Z \tag{31}
\]

を得る。熱力学における保存量の表現法⑤

\[
U - TS = F \tag{32}
\]

と比較することにより、式(31)の左辺第1項は内部エネルギー \(U \) を、右辺は自由エネルギー \(F \) を、も又相関行列の行列式 \(\left| C \right| \) は温度 \(T \) をそれぞれ表していると考えることができる。このようにしてユニット間の相関が与えられると保存量が定義できることが示された。

5. すすべ

本論文では、ボルツマンマシンの定常状態をエントロピー最大という観点から解析し、ボルツマンマシンを制約付きの最適化問題としてとらえると共に、保存量を出力できることを示した。ボルツマンマシンの学習は定常状態を用いてなされるので、本論文で示した結果は学習過程にも適用可能である。それによると、ボルツマンマシンの学習における焼きなましや結合荷重を変化させることは、実はラグランジュ乗数を変化させていることに対応する。今後、さらにボルツマンマシンの最適化問題への応用、ならびに学習について研究を進めていく予定である。

文　献

(3) Herman H. 著、牧島邦夫、小森均志共訳：“協同現象の数理”，pp. 61-64, 東海大学出版会 (1986).

(平成 4 年 7 月 1 日受付，9 月 14 日再受付)